

FibreNet 🧼

Microrobotic Automation

for

Fibers Characterization

Presenter: Ali Zarei (ESR 2)

Supervisor: Prof. Pasi Kallio

Motivation:

paper products

paper fiber

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713

Flax linen

Flax fiber

wound healing tape

Cellulose-based aerogel fiber

2

Fiber Characterization:

Micro-fibril Angle measurements

Fig. 1. Schematic representation of the layer structure of a single wood fiber: ϕ , fibril angle (see text).

Marie Skłodowska-Curie grant agreement No 764713

Microrobotic Automation:

Automation – tensile test:

Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713

Automation – grasping:

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713

FibreNet 🦃

Automation – grasping:

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713

FibreNet 🦃

	Title	Method	Result
	Assisted ROI Selection, Detecting free region of grasped fiber automatically	Morphological methods on image	Extracting initial length of grasped fiber before test
	State recognition of fiber (Grasped or Not)	CNN on images (transfer learning using VGG16)	94.2 % accuracy in average
	Slippage prediction before test	CNN on images (transfer learning using VGG16)	Left slippage prediction: 71.4 % Right slippage prediction: 71.53 % Successful test prediction: 84.35 %
1	Automatic object segmentation for scene understanding	CNN on images (using U-Net)	Segmentation of fibers and grippers (>80% of pixels)

Marie Skłodowska-Curie grant agreement No 764713

Challenges – grasping and tensile test:

- High diversity of dimensions and shapes of natural fiber
 Needs our methods to become more generalized
- Initial length is hard to measure, as the contact point is unknown
- Hard to extract interaction information between paper fibers (<20 μm) and gripper's surface

Automation – MFA:

Ye, Chun, M. Olavi Sundström, and Kari Remes. "Microscopic transmission ellipsometry: measurement of the fibril angle and the relative phase retardation of single, intact wood pulp fibers." *Applied optics* 33.28 (1994): 6626-6637.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713

FibreNet 🥮

Automation – MFA:

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713 16

Automation – MFA analysis:

Analysis by Dr. Dhanesh kattipparambil Rajan (dhanesh.kr@tuni.fi)

Challenges – MFA:

• Fibre orientation

• Chun Ye MFA method: Straight fibres Vs twisted/curved fibres

Challenges – MFA:

Summary and future works:

Automation of Grasping and tensile test

- User-friendly software to perform the tensile test and collect data with a few clicks
- ✓ Automatic initial length detector
- ✓ ML-based method for samples and gripper segmentation
- ML-based method to recognize the Grasped state of fiber
- ✓ Slippage prediction of the fiber subject to tensile test inside the grippers (for 65 µm aerogel fibers)
- MFA measurement using light polarization Integrated in microrobotic platform for tensile test
- Reference method to extract real MFA

り Tampereen yliopisto Tampere University

ESR 2: Ali Zarei Contact info: <u>ali.zarei@tuni.fi</u>

Supervisor: Professor Pasi Kallio

Thanks to our collaborators:

<u>Research</u>: Dhanesh Kattipparambil Rajan August Brandnerg Marko Žižek Matin Rostamitabar

<u>Hardware design and implementation:</u> Olli Tanhuanpää Markus Kakkonen

<u>Supervision:</u> Pasi Kallio Artem Kulachenko Ulrich Hirn

More info: http://fibrenet.eu/

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713

FibreNet 🥮