

www.tugraz.at

Influence of the Displacement Rate on Longitudinal Modulus of Single Cellulosic Fibres

FibreNet seminar

Marko Žižek, Ulrich Hirn Graz University of Technology Institute of Bioproducts and Paper Technology

Motivation

- Paper => fibre network.
- Lately focus on modelling and simulations.
- Accurate data is needed.
- Common assumption:
 - Plastic-elastic type of behaviour.
- Reality:

www.tugraz.at

- Fibres are viscoelastic material.
 - Slightly different behaviour than other materials (metals) => there is high relevance of the loading rate in tensile testing.
 - Nobody is looking into it => neglected.

In this presentation I will try to explain the significance of the loading rate on the elastic modulus *E* of single fibres during the tensile testing.

Materials

Sample preparation

- Preparation of single fibres
 - Swelling (24 h)
 - Dilution

www.tugraz.at

- Pressure drying
- Gluing on the SH
 - Uhu Plus Endfest
- Conditioning for 5 days
 - Curing of the glue
 - Elimination of *T* effect on SH

Infinite Focus Microscopy IFM

CTMP

CP

VIS

Dynamic Mechanical Analysis DMA

- Constant L_{max} :
 - $L_{\rm max} = 15 \ \mu {\rm m}$
- Displacement rates:
 - $r_{\rm min} = 0.113$ %/s
 - $r_{\rm max} = 800 \ \%/s$
 - 2 min conditioning between cycles
- Measuring F

- Upper clamp (fixed)
- Sample
- Sample holder
- Lower clamp (moving)

Dynamic Mechanical Analysis DMA

Microtomy

СР

CTMP

UKP

Results

Results

Sample	<i>E</i> (r _{min}) [GPa]	E(r _{max}) [GPa]	Δ <i>Ε</i> [GPa]	Δ <i>Ε</i> [%]
CTMP	5.32	8.73	3.39	64
СР	4.68	9.26	4.59	98
UKP	1.71	3.32	1.60	94
VIS	4.01	8.52	4.51	113
VIS no SH	6.89	7.22	1.77	32

When the loading rate increases by factor 10, the *E* will be increased by factor of the slope [dec⁻¹].

- *E* is significantly increasing with the increase of displacement rate for all fibre materials.
- The highest displacement rate dependency is shown by CP and VIS and the lowest by VIS no SH.

Displacement rate should not be neglected in fibre tensile testing.

Thank you for your attention

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 764713.

